				_			 				
Roll No) .							Total	No.	of	Pages

Total No. of Questions: 07

B.Sc. (IT) (Sem.-4th) COMPUTER ORIENTED NUMERICAL METHODS Subject Code : BS-208 Paper ID : [B0416]

Time: 3 Hrs.

Max. Marks : 60

: 03

INSTRUCTION TO CANDIDATES :

- SECTION-A is COMPULSORY consisting of TEN questions carrying 1. TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION-A

I. Write briefly :

- (i) Find the solution of $x^2 1000x + 25 = 0$ using floating point arithmetic with 4 digit mantissa. Give comments on the result so obtained.
- (ii) Show that $x_{n+1} = \frac{1}{2} x_n \left(3 \frac{x_n^2}{\alpha} \right)$ has second order convergence near

$\sqrt{\alpha}$.

- (iii) Show that the order of convergence of Newton-Raphson method is quadratic.
- (iv) What do you understand by ill-conditioned system of equations? Illustrate your answer with the help of suitable example.
- (v) Prove that $(1 + \Delta) (1 \nabla) = 1$.
- (vi) Construct divided difference table for the data

X :	1	2	4	8	10
Y :	0	1	5	21	27

a2zpapers.com

We provide GNDU question papers, PTU question papers, PU question papers, LPU question papers, GNA university

(vii) Derive dy/dx and d^2y/dx^2 from Stirling formula

(viii) Evalu	ate $\frac{dy}{dx}$ a	at $x = 2$	when	
X:	0	1	3	6
Y:	18	10	-18	40

(ix) Find λ such that the quadrature formula

$$\int_{0}^{1} \frac{f(x)}{\sqrt{x}} \, dx = A f(0) + B f(\lambda) + C f(1)$$

may be exact for polynomial of degree 3.

(x) Write the expression of improved Euler's method.

SECTION-B

- 2zpapers.com
- 2. (i) Discuss Newton-Raphson method for the system of non-linear equations and solve $x^2 + y = 11$, $y^2 + x = 7$ starting with x = 3.5 and y = -1.8.
 - (ii) Discuss the comparison of Newton Raphson with Regula Falsi method. (7+3)
- 3. (i) Solve the system of equations x + y + z = 6, 3x + (3 + ∈)y + 4z=20, 2x + y + 3z = 13 using Gauss Elimination method where ∈ is small such that 1 ± ∈² = 1. What happens if we do not use partial pivoting at second step?
 - (ii) Write algorithm of Gauss-Seidel Method. (6+4)

4. (i) Using Lagranges interpolation formula express $\frac{x^2 + 6x - 1}{(x-1)(x-4)(x-6)}$

as a sum of partial fractions.

(ii) Obtain the cubic spline for the data

X :	0	1	2	3	
Y :	2	- 6	- 8	2	(3+7)

a2zpapers.com

We provide GNDU question papers, PTU question papers, PU question papers, LPU question papers, GNA university

6.

5. (i) Obtain a relation of the form $y = ab^x$ for the data

2	X :	2	3	4	5	6				
	Y:	8.3	15.4	33.1	65.2	126.4	1			
I	By method of least squares.									
(ii) I	(ii) Find the error in Simpson's 1/3 rd rule. (5+5)									
	From the following table of values of x and y, obtain dy/dx and d^2y/dx^2 for x = 1.2, 2.2 and 1.6									
X :	1.0	1	.2	1.4	1.6	1.8	2.0	2.2		
Y :	2.7183	3 3.3	3201	4.0552	4.9530	6.0496	7.3891	9.0250		

7. (i) Using Milne's method, solve $y' = 1 + y^2$ with y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, y(0.6) = 0.6841, obtain y(0.8).

(10)

(ii) Given the initial value problem $y' = 1 + y^2$, y(0) = 0. Find y(0.4) by Runge-Kutta fourth order method by taking h = 0.2. (5+5)